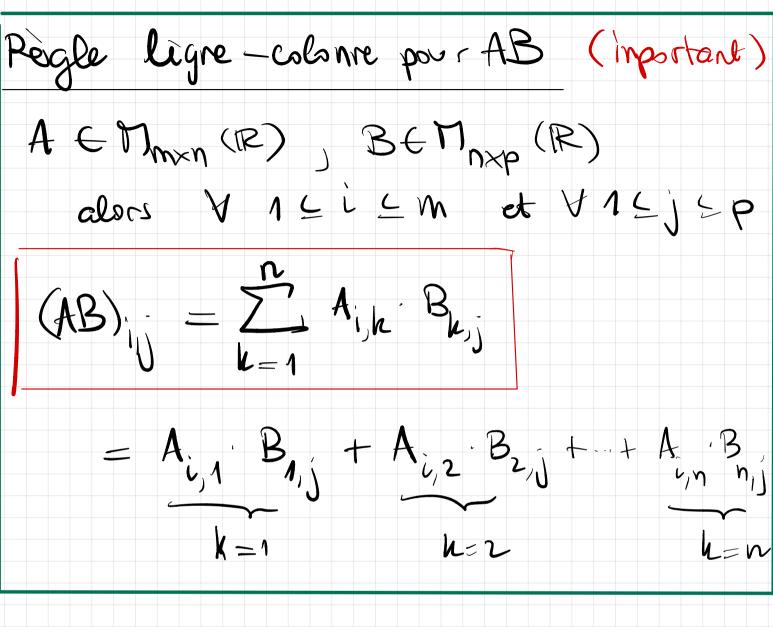
Cours 4.2 3.10.2024



justification:

en effet, la jène colonne de AB

est par définition

Abj E RM (où bj est la jère colonne de B)

et la iène corposante de Abj

est égale au produit scaleire de la iène

ligne de A vec 6. Or la ière ligre de 1 est a; = (Ai, 1 Ai, 2 Ai, 3 ... Ai, n) et $\vec{a}_1 \cdot \vec{b}_1 = A_{i,1} \cdot B_{i,1} + A_{i,2} \cdot B_{2,1} + \cdots + A_{i,n} \cdot B_{n,j}$ $= \sum_{k=1}^{n} A_{i,k} \cdot B_{k,j}$ regle Usol Slame

Théorème sans numero: Propriétés des opérations mat-lielles

Solvent (TM2, p. 106) A, B, C des matrices (couposades) clors

a) A(BC) = (AB)C

b) A(B+c) = AB + Ac

c)(B+c)A = BA+cA

 $A) \lambda (AB) = (\lambda A)B = A(\lambda B)$

AER

e) Si A E Mmxn (IR) alors

 $I_m A = A = A I_n$ $\sim \text{modrice identific}$ $\sim \sim \sim$

NB: . Il se peut ge AB solt défini) sons que BA le soit

. Mêre si AB et BA sont définie

ex:
$$A = \begin{pmatrix} 123 \\ 456 \end{pmatrix}$$
 $B = \begin{pmatrix} 111 \\ 111 \end{pmatrix}$
1) $A = \begin{pmatrix} 123 \\ 456 \end{pmatrix}$ $B = \begin{pmatrix} 111 \\ 111 \end{pmatrix}$

AB est defini,

$$AB = (123)(111) = (666)$$

$$(456)(111) = (151515)$$

$$2\times3$$
wals BA what was definite.

wals BA n'est pas defin's

2)
$$A = \begin{pmatrix} 123 \\ 321 \end{pmatrix}$$
 $B = \begin{pmatrix} 12 \\ 21 \\ 12 \end{pmatrix}$ 3×2

$$AB = \begin{pmatrix} 8 & 0 \\ 8 & 0 \end{pmatrix}_{2 \times 2}$$

$$BA = \begin{pmatrix} 7 & 6 & 5 \\ 5 & 6 & 7 \\ 7 & 6 & 5 \end{pmatrix}_{3\times 3}$$

AB & BA pour dus raisons de taille.

3)
$$A = \begin{pmatrix} 00 \\ 10 \end{pmatrix}_{2\times 2}$$
 $B = \begin{pmatrix} 10 \\ 02 \end{pmatrix}_{2\times 2}$
 $AB = \begin{pmatrix} 00 \\ 10 \end{pmatrix} \begin{pmatrix} 10 \\ 02 \end{pmatrix} = \begin{pmatrix} 00 \\ 10 \end{pmatrix}$

$$\mathcal{B}\mathcal{A} = \begin{pmatrix} 10\\ 02 \end{pmatrix} \begin{pmatrix} 00\\ 10 \end{pmatrix} = \begin{pmatrix} 00\\ 20 \end{pmatrix}$$

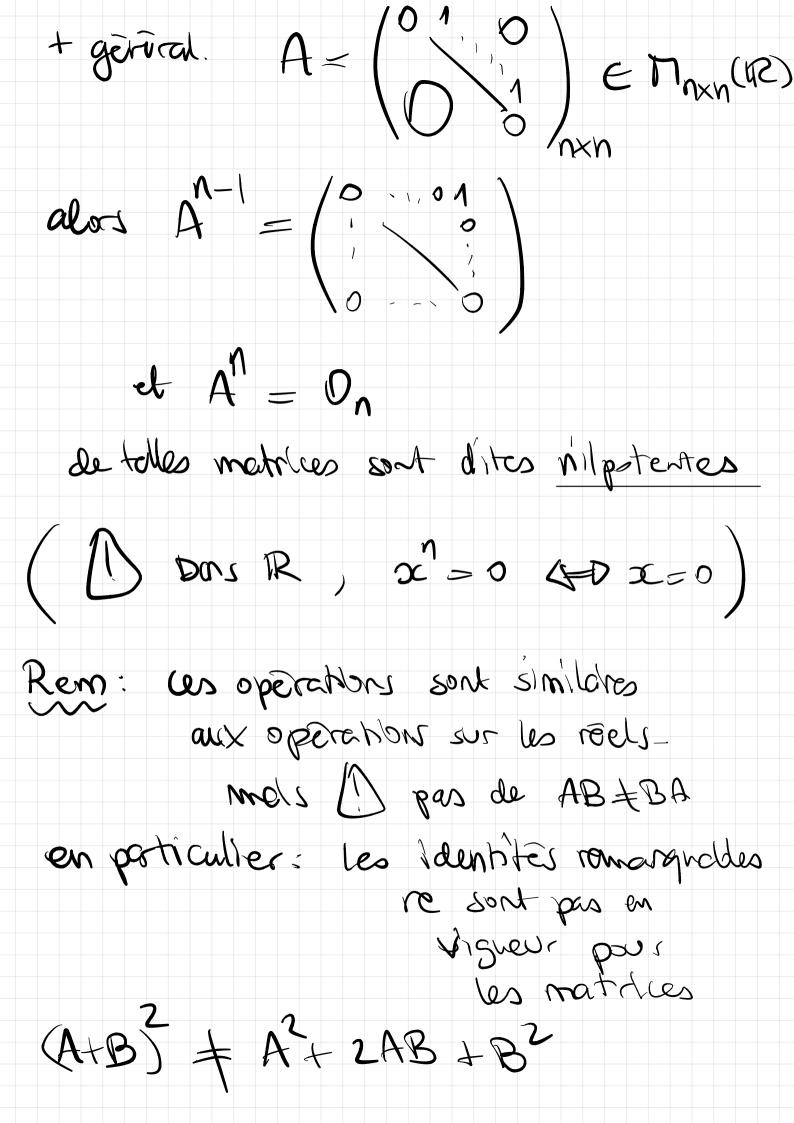
4) (1) on poet about des
$$A \in \Pi_{nm}(\mathbb{R})$$

 $L_q A \neq O_w$ wass $L_q A^2 = O_n$

$$A^{3} = A \cdot A = \begin{pmatrix} 00 \\ 10 \end{pmatrix} \begin{pmatrix} 00 \\ 10 \end{pmatrix} = \begin{pmatrix} 00 \\ 00 \end{pmatrix}$$

$$\begin{array}{ccc}
Pire: & A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in \Pi_{3\times 3}(\mathbb{R})
\end{array}$$

$$A^{2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad A^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0_{3\times 3}$$



 $(A+B)^2 = A^2 + AB + BA + B^2$ S2.13 Paissances d'une matrice connée Pet: Pour AEDmxn (R) carrèe et pour lez 0 entier on définit la tièrre puissance de A, votée Ak par la formule (récurrente) SA det In (motorce identité) h=0 Ak+1 = Ak. A si 470 $(A^{1} = A^{0} A = I_{n} A = A$ $e + A^{2} = A^{1} A = A A$ rasurant ...

$$e^{\chi}$$

ex!

1) So A est diagonale
$$A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{pmatrix}$$

alors $A^k = \begin{pmatrix} \lambda_1^k & 0 \\ 0 & \lambda_n^k \end{pmatrix}$ encore

diagonale.

2)
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 $A^2 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$

$$A^{3} = \binom{12}{01}\binom{11}{01} = \binom{13}{01}$$

$$A^{k} = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \qquad \forall k \in \mathbb{N}$$

3)
$$A = \begin{pmatrix} 11 \\ 10 \end{pmatrix}$$
 $\vec{x}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

$$A\overline{x}_0 = \begin{pmatrix} 11\\10 \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1\\1 \end{pmatrix} = \overline{x}$$

$$\overrightarrow{A} \overrightarrow{x}_{o} = A (\overrightarrow{A} \overrightarrow{x}_{o}) = A (\overrightarrow{1}) = (\overrightarrow{1}) (\overrightarrow{1}) = (\overrightarrow{1})$$

La introdult le systère nuerige

a Florence en 1280!

et soit
$$A_{0} = \begin{pmatrix} \omega(0) - \sin(0) \\ \sin(0) \end{pmatrix}$$

la mottre associée à la ortation d'agle 0 centrée en (0,0)

$$A_{\theta}^{2} = A_{\theta} \cdot A_{\theta} = \text{rotation d'argle 20}$$

$$A_0^3 = rot$$
 d'agle 30

$$A_{\Theta}^{k} = \text{rot d'argle } k\Theta$$
 $k \in \mathbb{N}$

exemple:
$$\theta = \frac{270}{11}$$

$$A = \left(\frac{27}{11}\right)$$

$$\sin\left(\frac{27}{11}\right)$$

alors
$$A_{\frac{2\pi}{11}}^{11} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

5) Plus gérèral. θ, φ ∈ R alors $A_{\theta} \cdot A_{\varphi} = A_{\theta + \varphi}$ idex de deux: produit matriciel

(cost sint (cost -sint)

(sint cost)

(sint cost) $\frac{1}{2}\cos\theta \cdot \cos\varphi - \sin\theta \sin\varphi$ Formules trigo $\frac{1}{2} \left(\cos \left(\Theta + \varphi \right) \right)$ -sm(0+4) Cos (O+4)

$$per A^T \in M_{n \times m}(\mathbb{R})$$

la matrice desinte par

$$(A^{\top})_{1,j} = A_{j,i}$$

V1LiEM

$$ex: A = (123)$$
 $AT = (25)$
 $AT = (36)$
 $AT = (36)$

$$A^{T} = \begin{pmatrix} 1 & 9 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}_{3\times 2}$$

$$B = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 2 & -1 \\ 1 & 3 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 2 & -1 \\ 1 & 3 & 1 \end{pmatrix} \quad B^{T} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 2 & -1 & 1 \end{pmatrix}_{3\times 3}$$

$$C = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

$$C = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

$$C = (x_1 x_2 x_3 x_4)$$

$$(x_1)$$

$$(x_2)$$

$$(x_1)$$

$$(x_2)$$

$$(x_3)$$

$$(x_4)$$

$$(x_4$$

$$D = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 3 & 4 \end{pmatrix} = D^{T}$$

Det on dit que A & Man (P) (conre)
est synétrique si A = AT.

Propriétés (thm sur la transposée)

$$\cdot (A^T)^T = A$$

$$. (A + B)^{\mathsf{T}} = A^{\mathsf{T}} + B^{\mathsf{T}}$$

$$(\lambda A)^{T} = \lambda A^{T}$$

$$\cdot (AB)^{\top} = B^{\top}A^{\top}$$

(a trenspose

 $\Pi_{m\times n} \longrightarrow \Pi_{n\times m}$ A $+ > A^{\top}$

est une transo lireaire §22. Matrices inversibles et inverse d'une matrice (p. 181) Det: A ∈ M_{n×n} (R) (carrée) est dite inversible s'il existe une motrice BEMINN (IR) telle ge AB = In = BA Ce B, s'il existe, il est unique et s'appelle l'inverse de A note A-1 (dons R, tout a to verifie a. 1 = 1) exemples. . In est inversible et In = In $\left(\cos I_{n}, I_{n} = I_{n}\right)$

. On n'est pas investible, car $\forall B$ on a $O_n \cdot B = O_n$

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$T(e_1) T(e_2)$$

$$A(x) = {\binom{01}{10}}{\binom{x}{y}} = {\binom{y}{x}}$$

$$A^2 = \binom{01}{10}\binom{01}{10} = \binom{10}{01}$$

donc
$$A = A^{-1}$$

donc $A = A^{-1}$ donc A est eggle à son inverse!

Si $A \in M_{n\times n}(\mathbb{R})$ est inversible alors $AB \in \mathbb{R}^n$, l'eq matriciolle $AB = B$ possède une et une seule solution: $B = A^1$ to (1) Le calcul de A^1 peut être coêteux)	
$A\overrightarrow{z} = \overrightarrow{b}$ possède une et une sente solution: $\overrightarrow{z} = \overrightarrow{A}^{1} \overrightarrow{b}$	
possède une et une senle solution: $\vec{z} = \vec{A}^1 \vec{k}$	
possède une et une sente solution : $\vec{z} = \vec{A} t$	
(!) le calcul de A pout être coûteux)	3
Thm-1: Soient A,B des matrices incerebles	
Alas	(P
1) A est inversible et (A') = A	
2) AB et BA sont invenibles	
et $(AB5] = B[A]$	
$(BA)^{-1} = A^{-1}B^{-1}$	
3) A^{T} est inexide et $(A^{T})' = (A^{T})^{T}$	•
Da somme de matriles meri, bles n'est pas forcement meri, ble.	

Def: Matrices élémentaires
Une matrice E E M _{nxn} (IR) est élémentaire si elle s'obtient à partir de In
avec une seule opération êtem sur les ligres de In,
3 types de matrices éternentaires
D P = la motrice obt en Echangeant 1) ligne i et ligre j de In
$\frac{e\times}{13} \cdot P_{13} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$
2) D(A) = matrice obt. en multipliant la ligre i de In
par 3 ETR 30 }

 $\mathcal{D}_{2}(\overline{2}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \overline{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

(3) E (1) = mat, obt, en ajoutent

à la joire ligre de In

A fois la jene ligre de In

ex:
$$\begin{pmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \pm 1,3 (4)$$

Thm "élénentaire": les matrices élems sont inversibles

$$3) = E_{i,j}(\lambda)^{-1} = E_{i,j}(-\lambda) \qquad \lambda \in \mathbb{R}$$

(et leurs inverses ont élèmentaires).

Mé	ga-The	orème	(Th	mB, p	121)		
A	E Myst	(R)	corè	alors	les a	ond. su	elvant
	sont e						
	A w			alente	a Vid	entité	
	(cad		me ed				
c)	A poss	ode n	pivots				
d)	Az o		n'a qe	la sol.	₹ =	اع 6ء	R
e)	les c	conol	œ A	tnez	l'n.	1 nderpa	end.
f)	la tra	nuto -	A R	$\supset \mathbb{R}^n$	eot	Mech	ile
9)	YBER	1 lleq,	A2 =	t pos	sode	au vs	ns Se

h) les colonnes de A organdient R?

i) TA: R'>R' est surjective	
J) il existe CEMmxn (IR) ta	CA = In
k) il existe DE nxn(IR) tq	AD = In
1) AT est inversible	
m) TA: R" > R" est bijech	e
n) A est produit de matrices	elorrentaires
(prew)	
Methode pratique pour sousir si	
et a	
1) On early (A ! In)	alcul de A-1 ACThru(R)
1) On early (A ! In)	alcul de A-1 ACThru(R)
et a	alcul de A-1 ACThru(R)
1) On early (A', In) 2) opelein sur (A', In) 1 juaquia abtenir (R', A')	alcul de A-1 ACMAN(R)
1) On early (A ! In) 2) opelem sur (A! In) 1 n x (2n) 1 juaquià abtenir	alcul de A-1 ACMAN(R)

Si R = In alors A est inversible et $A! = A^{1}$ (Mesoi)